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SUMMARY

Gene regulatory networks (GRNs) regulate critical
events during development. In complex tissues,
such as the mammalian central nervous system
(CNS), networks likely provide the complex regula-
tory interactions needed to direct the specification
of the many CNS cell types. Here, we dissect a GRN
that regulates a binary fate decision between two
siblings in the murine retina, the rod photoreceptor
and bipolar interneuron. The GRN centers on Blimp1,
one of the transcription factors (TFs) that regulates
the rod versus bipolar cell fate decision.We identified
a cis-regulatory module (CRM), B108, that mimics
Blimp1 expression. Deletion of genomic B108 by
CRISPR/Cas9 in vivo using electroporation abolished
the function of Blimp1. Otx2 and RORb were found
to regulate Blimp1 expression via B108, and Blimp1
and Otx2 were shown to form a negative feedback
loop that regulates the level of Otx2, which regulates
the production of the correct ratio of rods and bipolar
cells.

INTRODUCTION

Many studies have been carried out wherein individual genes are

manipulated and their effects on cell types characterized. In

most instances, these are transcription factors or elements of

a signaling pathway (Afelik and Jensen, 2013; Lee and Pfaff,

2001; Nakajima, 2011). The expression patterns ofmany of these

genes, and their effects, are often spread acrossmany cell types.

Nevertheless, they are able to play specific roles in different

times and places. The consensus is that specific outcomes are

due to different contexts in different cells (Kamachi and Kondoh,

2013). Chromatin structure, microRNAs, and other transcripts

and proteins undoubtedly create such contexts. However,

studies that define a particular context are difficult and, for the

most part, have not been carried out. To dissect such complex-

ities, it is useful to have a system by which one can manipulate

gene expression, ideally in vivo. In addition, a system in which

one can readily discover the cis-regulatory sequences required
Developme
for gene regulation is advantageous. The murine retina offers

such a system (Kim et al., 2008a; Matsuda and Cepko, 2004,

2007). We have exploited this system to address a binary fate

decision in the mammalian retina.

The retina is a highly evolved sense organ, which uses photo-

receptors to capture light and create neural signals that are

transmitted to other retinal neurons. Parallel processing of these

visual signals is carried out by more than 60 retinal cell types

to extract selected features from the visual scene (Masland

and Raviola, 2000; Meister, 1996). There are a large number of

inherited diseases of the retina, most due to dysfunction and

loss of photoreceptor cells (Boucherie et al., 2011). An under-

standing of the specification of retinal neurons can greatly inform

the development of therapies to treat such diseases, e.g., the

production of photoreceptor cells from stem cells (Ong and da

Cruz, 2012).

During retinal development, retinal cell types are specified

from a pool of multipotent retinal progenitor cells (RPCs) in a

temporal order (Livesey and Cepko, 2001). RPCs can produce

two very different cell types in a terminal division. One such divi-

sion produces a rod photoreceptor cell and an interneuron, the

bipolar cell (Turner and Cepko, 1987). There have been several

studies that have identified transcription factors (TFs) that

impact these two fates (Brzezinski et al., 2010; Jia et al., 2009;

Katoh et al., 2010; Koike et al., 2007; Ohsawa and Kageyama,

2008; Sato et al., 2007). Many of these genes impact more retinal

cell types than just the rods and bipolar cells. We wished to un-

derstand the gene regulatory network (GRN) operating within the

RPCs and their newly postmitotic progeny at the time when this

rod versus bipolar cell binary decision is beingmade. Binary cell-

fate decisions have been well studied in invertebrates and in

vertebrate hematopoiesis (Graf and Enver, 2009; Jukam and

Desplan, 2010). However, in themammalian central nervous sys-

tem (CNS), including the retina, the TFs that control cell-fate de-

cisions have been mainly studied by gain- and loss-of-function

manipulations of individual TFs. The participation of TFs within

a GRN and the cis-regulatory modules (CRMs) that they utilize

have not been systematically addressed. Here, we have identi-

fied interactions of key TFs that regulate the final ratio of rods

versus bipolar cells within the rod-bipolar GRN, based on the

identification of a CRM for Blimp1, a gene that is important in

this GRN. We also used in vivo electroporation to interrogate

the necessity of this CRM, after first testing CRISPR/Cas9

(Cong et al., 2013; Mali et al., 2013; Sternberg et al., 2014) in a
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Figure 1. Identification of Enhancers for the Blimp1 Gene

(A) TheBlimp1 locus viewed by the ECR Browser Program. Themouse reference genomic sequence is aligned with that of other species. The transcript of mouse

Blimp1 gene is shown on the top. Blue, coding sequences; yellow, untranslated regions; red, conserved regions upstream of Blimp1; light brown, introns.

(legend continued on next page)
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reporter strain of mice to determine the effectiveness of this

method to create genomic alterations in tissues. We found that

CRISPR/Cas9 created homozygous and heterozygous alter-

ations in >50% of the electroporated retinal cells. This method

was then employed for deletion of the Blimp1 CRM, where it

led to the loss of Blimp1 function. Together, all of these experi-

ments led to the identification of the GRN that regulates the

rod versus the bipolar fate. The GRN regulates the level of

Otx2, a gene that is required for the production of both rods

and bipolar cells, whose level determines whether a cell be-

comes a rod or a bipolar cell.

RESULTS

Identification of Retinal Enhancers of the Blimp1 Gene
Blimp1, a zinc-finger transcription factor (also known as Prdm1),

has been shown to be required for the production of the proper

ratio of rods and bipolar cells, as its loss leads to an increase in

bipolar cells and a reduction in rods (Brzezinski et al., 2010,

2013; Katoh et al., 2010). As the first step in the dissection of

the rod-bipolar GRN, we sought to identify the critical CRMs

that control Blimp1 expression in the retina. DNA fragments up-

stream of the Blimp1 transcription start site (TSS) were tested for

their ability to activate expression of reporter genes in devel-

oping mouse retinas, using electroporation into retinal explants.

An �12 kb mouse genomic fragment (B12kb) was able to drive

expression in retinas, and thus a series of deletions were tested

to determine the minimal sequence for this activity (Figure 1).

A 108 bp fragment (B108) was found to be sufficient to drive re-

porter expression in retinas (Figure 1; Figure S1 available online).

B108 was also necessary for the activity of B12kb, as deletion of

this fragment dramatically reduced EGFP expression driven by

B12kb (Figures 2A–2D).

Expression driven by the B108 enhancer was analyzed for

fidelity of expression by comparing it with that of the native

Blimp1, which is transiently expressed. From postnatal day

0 (P0) to P3, Blimp1 is broadly expressed in many retinal cells.

Later, its expression is downregulated, becoming undetectable

by antibody staining and northern blot assay after P7 (Brzezinski

et al., 2010; Katoh et al., 2010). The expression pattern of EGFP

driven by B108 was examined relative to immunohistochemistry

(IHC) for Blimp1 at different developmental stages. When the

B108 reporter was electroporated into retinas in vivo at P0,

�90% of EGFP+ cells were positive for Blimp1 IHC signals by

P3 (Figures 2A–2D). Consistent with endogenous Blimp1 expres-

sion pattern, EGFP expression driven by B108 was downregu-

lated beginning at P7 (Figure S2A). We could detect low EGFP

expression in rods after P7 if anti-GFP antibody was used to

amplify the signal, possibly because of the greater stability of

EGFP proteins/mRNAs relative to Blimp1 and/or missing ele-

ments that are responsible for downregulation of Blimp1 within

B108 (Figure S2B). To investigate one possible element for
(B) An �12 kb fragment (B12kb) upstream of the Blimp1 gene and a variety of de

and electroporated intomouse retinas, with assessment of EGFP levels indicated

critical for activity.

(C) A series of truncations of the �1 kb fragment were generated based on seq

plasmid individually and tested for activity, as summarized on the left.

See also Figure S1.
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downregulation, we tested whether the addition of the Blimp1

30 UTR to the B12kb construct would lead to a reduction in

expression (Figure S7A). Indeed, a significant reduction was

seen, in keeping with previous studies of Blimp1 regulation in

other tissues, which showed that microRNAs downregulate

Blimp1 through 30 UTR sites (Nie et al., 2008; West et al., 2009;

Zhang et al., 2011). In addition, as Blimp1 has been shown to

negatively regulate its own expression, we coelectroporated

CAG-Blimp1 with the B12kb reporter plasmid and again

observed evidence of negative regulation (Figure S7B). Overall,

the onset of expression and the cells that activated the B108

enhancer recapitulated the endogenous expression of Blimp1

during early postnatal retina development, and additional ele-

ments within a larger regulatory region of Blimp1 are responsible

for fine-tuning the downregulation.

Blimp1 has been reported to be expressed predominantly

in postmitotic cells in the developing retina (Brzezinski et al.,

2010; Katoh et al., 2010). We thus investigated whether B108

activated EGFP expression in postmitotic cells by using EdU,

a thymidine analog, to mark cells in S phase. EGFP+ cells were

rarely found to be EdU+ 1 hr after EdU administration, demon-

strating that B108 was not active in S phase retinal cells (Fig-

ure S2D). We further addressed whether B108 would be active

in G2 or M phase by an EdU pulse-chase assay. In the postnatal

developing retina, the cell-cycle length of mitotic progenitors is

roughly 30 hr (S phase: 16 hr; G2 phase: 3 hr; M phase: 2 hr;

G1 phase: 8 hr) (Young, 1985b). Following a short pulse of EdU

and a 20 hr chase, the majority of EdU+ cells should be in G1/

G0 phase (Figure S2C). Analysis of cells after a 20 hr chase

showed that most EdU+ cells (in G1/G0 phase) had not turned

on EGFP expression, suggesting that they needed more time

to activate B108 (Figure S2D). These experiments further vali-

date the B108 enhancer, as it predominantly drives expression

in postmitotic cells of the postnatal retina, consistent with the

timing of Blimp1 activation.

Lastly, a recent study used the Blimp1-Cre BAC-transgenic

mouse to trace cells with a Blimp1 expression history. Nearly

all photoreceptors, about 30% of bipolar and amacrine cells,

roughly half of horizontal cells, and very few Müller glial cells

showed a history of Blimp1 expression (Brzezinski et al.,

2013). We were interested in the fate of the cells that activated

the B108 enhancer. Because B108 activity was downregulated

as the cells matured, we needed to use a history assay to

determine which cell fates were marked by the transiently

active B108 enhancer. To this end, we used B108 to drive

Cre expression. A control construct with no enhancer led to

very few cells with Cre history (Figure 2E). Cells that activated

B108 primarily became rods, with a few becoming amacrine

and Muller glial cells, but almost no bipolar cells (Figures

2E–2K). This demonstrated that B108 preferentially tracked

the postnatal Blimp1-expressing cells that adopted the rod

photoreceptor fate.
letion variants were inserted upstream of the EGFP gene in a reporter plasmid

on the left. An�1 kb fragment (Chr10: 44464199-44465247; GRCm38/mm10) is

uence conservation. These fragments were cloned into the Stagia3 reporter

ntal Cell 30, 513–527, September 8, 2014 ª2014 Elsevier Inc. 515
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Figure 2. Characterization of the B108 Enhancer in Mouse Retinas

(A) Schematics of reporter plasmids. The B108 and B12kb fragment were used to drive EGFP expression. In B12kbD-EGFP plasmid, B108 was deleted

from B12kb fragment.

(B) The constructs shown in (A) were individually electroporated into P0 retinas in vivo with the CAG-LacZ plasmid as an electroporation efficiency control.

Tissue was examined at P3. For detailed procedures, please see the Protocol.

(C) Electroporated retinas were stained with anti-b-galactosidase (blue, label all electroporated cells), anti-GFP (green), and anti-Blimp1 (red) antibodies.

(legend continued on next page)
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These results demonstrate that the B108 enhancer drives

expression in a manner that substantially mimics the endoge-

nous Blimp1 expression in the developing postnatal mouse

retina, during the period when rod photoreceptors and bipolar

cells are born.

CRISPR/Cas9-Based Genome Engineering
Demonstrates that B108 Is Necessary for Endogenous
Blimp1 Expression
To gain a better understanding of the regulation of the endoge-

nous Blimp1 gene, we investigated whether B108 was required

for endogenous Blimp1 expression. With the recent advance

of the RNA-guided genome engineering technique, using

CRISPR/Cas9, targeted engineering of genomic DNA has the

potential to allow a rapid assessment of CRMs within the

genome (Cong et al., 2013; Mali et al., 2013; Sternberg et al.,

2014). We thus tested whether CRISPR/Cas9 could effectively

allow engineering of the mouse genome in vivo in the retina.

The general efficiency of CRISPR/Cas9 in mouse retinas was

examined using the RosamTmG/mTmG mouse strain, which is a

Cre reporter knockin line that utilizes both GFP and Tdtomato re-

porters (Muzumdar et al., 2007). This line expresses membrane

GFP (mGFP) in tissues following the Cre-mediated excision of

the membrane Tdtomato (mTdtomato) cassette (Figure S3A).

We constructed a CRISPR/Cas9 plasmid CRISPRmTmG to

specifically generate DNA double-stranded breaks near both

LoxP sites, by inserting 20 bp targeting sequences into the

CRISPR/Cas9 vector plasmid (Px330), which expresses both

Cas9 and guide RNAs in one plasmid (for detailed procedures,

please see the Protocol). Upon successful cleavage, the ends

of the cleaved DNA are predicted to ligate to each other via the

nonhomologous end-joining (NHEJ) DNA repair pathway, result-

ing in the deletion of the mTdtomato cassette and the switching

on of the mGFP expression. The CRISPRmTmG plasmid was

introduced into retinas of RosamTmG/mTmG mouse pups in vivo

at P0 by electroporation. After 21 days, in the electroporated

region, a significant number of retinal cells turned on mGFP

expression, suggesting that CRISPRmTmG successfully deleted

themTdtomato cassette from the genome (Figure S3B). Roughly

80% of rods, 30% of bipolar cells, 70% of Muller glial cells, and

40% of amacrine cells, which received the CRISPRmTmG

plasmid, turned on mGFP expression.

Given the relatively high efficiency of CRISPR/Cas9 in the

retina in vivo, we next investigated whether we could delete

the B108 enhancer from the genomic locus. CRISPR/Cas9 plas-

mids were constructed to generate double-strand breaks 50 and
30 to B108 in the mouse genome, and PCR primers were de-
(D) The percentage of Blimp1+GFP+LacZ+ retinal cells was calculated over differe

turned on reporter EGFP and expressed Blimp1 protein. GFP+LacZ+: electropo

protein. LacZ+: all electroporated cells. Error bars, SD.

(E–G) Schematics of plasmids are shown on top. CAG-loxP-STOP-loxP-EGFP,

constitutively expressed H2bRFP in all electroporated cells. Vector-Cre, negati

B108-Cre, Cre expression was driven by B108. The indicated combinations of plas

and stained with anti-GFP (green), anti-Chx10 (blue), anti-Pax6 (blue), or anti-So

(H–K) Quantification of the fate-mapping experiment. The percentage of electrop

Electroporated rods, H2bRFP+ cells in the outer nuclear layer. Electroporate

H2bRFP+Pax6+. Electroporated Müller glial cells (MG): H2bRFP+Sox9+. Vector:

combination in (G). Error bars, SEM. Two-tailed Student’s t test (*p < 0.01; **p <

See also Figure S2.
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signed to detect the deletion (Figure 3A). To assay whether the

CRISPR/Cas9 plasmids could delete B108, retinal cells were

electroporated in vivo with CRISPR/Cas9 plasmids and an

EGFP coelectroporation marker (Figure 3B). Genomic DNA

was prepared from fluorescence-activated cell sorting (FACS)-

sorted EGFP+ retinal cells and was subjected to PCR. A smaller

PCR fragment, the size predicted for the B108 deletion, was

observed only when this locus was targeted (the L band in Fig-

ure 3B). Sequencing of the L band PCR fragments as a popula-

tion revealed that the majority of the cleavage events directed by

the CRISPR/Cas9 plasmids, B51 andB33, were at positions 3 bp

50 to the PAM sequence, as predicted for CRISPR/Cas9 activity

(Figure 3C) (Cong et al., 2013). To further investigate the distribu-

tion and types of sequence changes in the targeted region, both

the H band, which corresponded to the wild-type (WT) size, and

the L band were cloned, and individual clones were sequenced

(Figures 3B, S3C, and S3D). The majority of products in the L

band were as seen in the bulk population sequence analysis,

that is, the same result shown in Figure 3C. In addition, there

were single cleavage events recorded in the products from the

H band, and a few other insertions and deletions were seen in

a minority of the products cloned from the H and L bands (Fig-

ures S3C and S3D). These results demonstrated that CRISPR/

Cas9 could be used to assess the requirement for B108 in regu-

lation of Blimp1 in vivo.

Blimp1 conditional knockout (CKO) mice have been shown to

have an increase in bipolar cells and a decrease in rod photore-

ceptors (Brzezinski et al., 2010; Katoh et al., 2010). If the B108

enhancer is required for Blimp1 expression, then the CRISPR/

Cas9-mediated deletion of B108 should recapitulate the CKO

phenotype. The lack of molecular markers that label cells with

successful CRISPR/Cas9 deletion, and the fact that the loss-of-

function phenotype is apparent only after Blimp1 expression is

downregulated, made it difficult to assess the phenotype of cells

that had lost the B108 enhancer. Thus, we used the Cre recombi-

nase-based fate-mapping strategy and examined whether the

production of bipolar cells was increased upon B108 deletion.

Wewere able to follow cells that took on the bipolar fate following

CRISPR/Cas9 action using a reporter plasmid for bipolar cells.

To report bipolar cell identity, the Cre-sensitive reporter

plasmid Chx10BP-LCL-EGFP was constructed (Figure 3D).

This reporter plasmid not only labels bipolar cells specifically

but it also switches expression of fluorescent reporter genes

following Cre-mediated excision. A previously identified Chx10

enhancer that is only active in bipolar cells was used to drive fluo-

rescent protein expression (Emerson and Cepko, 2011; Kim

et al., 2008a). Without Cre, bipolar cells are labeled with mCherry
nt retinal cell populations. Blimp1+GFP+LacZ+: electroporated retinal cells that

rated GFP+ cells. Blimp1+LacZ+: electroporated cells that expressed Blimp1

Cre activity reporter. CAG-H2bRFP, electroporation efficiency control, which

ve control for background signals. CAG-Cre, positive control for Cre activity.

mids were electroporated into P0 retinas in vivo. Retinaswere harvested at P14

x9 (blue) antibodies.

orated retinal cells of each type that turned on the Cre reporter was quantified.

d bipolar cells (BP): H2bRFP+Chx10+. Electroporated amacrine cells (AC):

plasmid combinations in (E). CAG: plasmid combination in (F). B108: plasmid

0.001). n R 3. Scale bar, 10 mm.
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Figure 3. Deletion of B108 from the Genome by CRISPR/Cas9 in Retinal Tissue

(A) Schematics of CRISPR/Cas9 plasmids targeting the B108 genomic region. B51, B53, B31, and B33: CRISPR/Cas9 plasmids. pF and pR: primers for the

amplification of the targeted region.

(B) B51 andB33 or B53 andB31were coelectroporated into P0 retinas ex vivo with the CAG-EGFP plasmid, which labels all the electroporated cells. Retinas were

cultured as explants for 5 days, harvested, and dissociated. Genomic DNA was extracted from FACS-sorted EGFP+ retinal cells and subjected to PCR. L (white

(legend continued on next page)
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(Figure 3D). Following Cre-mediated excision ofmCherry, EGFP

would be expressed. To test this construct as a reporter of B108-

Cre activity, the B108-Cre plasmid was delivered into P0 retinas

in vivo along with the Chx10BP-LCL-EGFP reporter. Consistent

with our previous experiment, most bipolar cells were labeled by

mCherry; i.e., they did not have a history of activating B108-Cre

(Figures 2G, 3F, and 3G). To determine if deletion of the endog-

enous B108 element from the endogenous Blimp1 gene would

result in a phenotype consistent with the Blimp1 CKO pheno-

type, the Blimp1 B108 CRISPR/Cas9 plasmids (B51+B33 or

B53+B31), along with the B108-Cre and Chx10BP-LCL-EGFP

plasmids, were electroporated into P0 retinas in vivo, and the

expression of the Chx10BP-LCL-EGFP reporter was assessed

at P14 (Figure 3E; for detailed procedures, please see the Proto-

col). The B108-Cre plasmid does not encode the PAM sequence

or the CRISPR/Cas9 target sites and so would be unaffected

by the CRISPR/Cas9 activity. In contrast to a no CRISPR/Cas9

control, a significant number of EGFP+ bipolar cells were

observed when the endogenous B108 was targeted (Figures

3F and 3G). This result phenocopies the Blimp1 CKO result,

wherein more bipolar cells are generated in the absence of

Blimp1, demonstrating the necessity of the B108 enhancer for

proper Blimp1 regulation in the retina. This result also demon-

strates that the cell-fate change seen following loss of Blimp1

is a cell-autonomous effect.

Identification of Critical Transcription Factor Binding
Sites in the B108 Enhancer
In order to understand the transcriptional regulation of Blimp1,

the B108 enhancer was subjected to a series of analyses to iden-

tify transcription factor binding sites (TFBSs) and their cognate

TFs. We first examined the B108 sequence for sequence con-

servation and then searched for putative TFBSs within the

conserved sequences. B108 showed high sequence conserva-

tion among several species, ranging from zebrafish to human,

with some stretches of nucleotides showing 100% conservation

(Figures 1 and S4). These highly conserved stretches appeared

in clusters, which further suggested theymight be functional reg-

ulatory regions (Arnone andDavidson, 1997; Berman et al., 2002;

Wasserman and Fickett, 1998). To test for function, selected

clusters were mutated individually, and these mutated reporters

were electroporated into retinas to assess reporter activity. Two

of these mutations significantly decreased enhancer activity

compared with the wild-type B108 (RORm andOtxm; Figure S4).

These two clusters were each deleted, and the deletion con-

structs also showed a loss-of-enhancer activity (DROR and

DOtx2; Figure S4). Analysis of these two sequences for TFBSs

by the rVista program and TRANSFAC algorithms suggested
arrow): a lowermolecular weight band created byCRISPR/Cas9. H: the band pred

plasmids were introduced.

(C) The sequence of the L band from (B). PAM (red) sequences and CRISPR-targ

(D) Schematics of the Chx10BP-LCL-EGFP reporter.

(E) Experimental design to test the necessity of the genomic B108. CRISPR/Cas9

retinas in vivo. Retinas were harvested and examined at P14.

(F) Retina sections were stained with anti-GFP antibody (green) and DAPI (blue).

(G) The percentage of EGFP+ cells over all labeled bipolar cells. Error bars, SEM

procedures, please see the Protocol.

See also Figure S3.
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that these two sites corresponded to the binding sites of RORb

and Otx2/Crx (Loots and Ovcharenko, 2004; Matys et al.,

2006). To test the sufficiency of the RORb and Otx2/Crx binding

sites, they were tested for their ability to drive EGFP in retinas

in the absence of other B108 sequences. These two TFBSs

were able to drive strong EGFP expression in the retina (ROx2;

Figure S4).

RORb and Otx2 Regulate Blimp1 Expression via the
B108 Enhancer
We examined whether RORb and Otx2/Crx were indeed up-

stream regulatory TFs of Blimp1 by addressing whether RORb

and Otx2/Crx were necessary for the activation of B108 and

the endogenousBlimp1 gene.We generated plasmids with short

hairpin RNAs (shRNAs) that could efficiently knock down RORb,

Otx2, Crx, or control LacZ expression (Figure S5). These shRNA

constructs were designed based on microRNA structures that

allowed for the use of PolII promoters, such as the CAG pro-

moter, and were located within the 30 UTR of mCherry, which

allowed for the tracking of shRNA expression via expression of

mCherry (Figure S5A) (Qiu et al., 2008).

When either the RORb-shRNA or Otx2-shRNA plasmids were

introduced into retinas, the activity of the B108-EGFP reporter

was dramatically decreased compared with controls within

24 hr (Figures 4A and 4B). In contrast, knockdown of Crx did

not affect the activity of B108. These results suggested that

RORb and Otx2 were required for the activation of B108. To

further investigate the requirement of Otx2, an Otx2Flox/Flox con-

ditional mouse strain was used. Electroporation of this strain with

B108-EGFP reporter and Cre showed a significant reduction in

the activity of B108 (Figure 4C).

To explore whether RORb and Otx2 could directly bind

to B108, we performed electrophoretic mobility shift assay

(EMSA) (Figures 4D and 4E). The fragments within B108 that

contained RORb or Otx2 binding sites were used as DNA

probes. Strong electrophoretic mobility bands were detected

when the wild-type RORb probe was mixed with RORb-

enriched nuclear extracts from 293T cells or wild-type P3 retina

nuclear extracts. When RORb antibody was incubated with

EMSA probes and retina nuclear extracts, the primary EMSA

band disappeared, suggesting that the RORb antibody pre-

vented the binding of RORb proteins to labeled DNA probes.

Furthermore, when the RORb binding site was mutated in the

EMSA DNA probe, no shifted band was detected, demon-

strating the specificity of the binding (Figures 4D and 4E).

Similar results were observed for Otx2, demonstrating that

the regulation of B108 is likely through direct binding of Otx2

and RORb.
icted to be the size of aWT or once-cut PCRproduct. Control: noCRISPR/Cas9

eting sites (purple and blue) are highlighted.

plasmids, B108-Cre, and Chx10BP-LCL-EGFP were coelectroporated into P0

. Two-tailed Student’s t test (*p < 0.015). n = 3. Scale bar, 10 mm. For detailed
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Figure 4. RORb and Otx2 Regulate B108

(A) Knockdown of RORb and Otx2 reduced B108 activity. Plasmids that contained different shRNA cassettes were electroporated into P0 retinas ex vivo with

B108-EGFP (2:1 ratio) and the electroporation efficiency control CAG-mCherry. Two different shRNA constructs were used for knocking down RORb or Otx2.

Retinas were cultured as explants for 24 hr and examined. Scale bar, 1 mm.

(B) Quantification of B108 activity. The ratio of total EGFP intensity over mCherry intensity was calculated (Fiji software) and normalized to LacZ-shRNA controls.

Error bars, SEM. Two-tailed Student’s t test (*p < 0.01). n R 4.

(C) The experimental design to test whether Otx2 is required for the activation of B108. Indicated combinations of plasmids were electroporated into P0

Otx2Flox/Flox retinas ex vivo. Retinas were cultured as explants for 24 hr and examined. Scale bars, 500 mm.

(D and E) EMSA. Probe sequences are shown. CAG-LacZ, CAG-Otx2, or CAG-RORb lysates: nuclear extracts of 293T cells that were transfected with CAG-LacZ,

CAG-Otx2, or CAG-RORb plasmid. P3 retina lysate: nuclear extracts of P3mouse retinas. Anti-GFP antibody was used as a negative control. Anti-RORb and anti-

Otx2 antibodies were included as indicated.

See also Figures S4 and S5.
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Figure 5. RORb and Otx2 Regulate Endoge-

nous Blimp1 Expression

(A) Representative images of retinal cells detected

by single-molecule FISH. The RORb-shRNA1or

LacZ-shRNA cassette was placed 30 of an EGFP

gene driven by the CAG promoter. Each plasmid

was electroporated into P0 retinas ex vivo. Retinas

were cultured for 24 hr before dissociation. Cy3-

labeled RORb probes and Cy5-labeled Blimp1

probes were coapplied to detect the expression

levels of RORb and Blimp1. Individual EGFP+

retinal cells that expressed the indicated shRNA

are circled. DAPI marks the nuclei. Scale bar,

10 mm.

(B) Quantification of RORb mRNA levels. LacZ-

shRNA (blue): EGFP+ cells treated with control

LacZ-shRNA plasmids. RORb-shRNA (green):

EGFP+ cells treated with RORb-shRNA1 plasmids.

(C) Quantification of Blimp1 mRNA levels.

(D) Representative images of retinal cells. Otx2-

shRNA1: the Otx2-shRNA1 cassette was placed 30

of an EGFP gene driven by the CAG promoter.

Experiments were performed as described in (A).

Cy3-labeled Otx2 probes and Cy5-labeled Blimp1

probes were coapplied. Scale bar, 10 mm.

(E) Quantification of Otx2 mRNA levels. LacZ-

shRNA (blue): EGFP+ cells treated with control

LacZ-shRNA plasmids. Otx2-shRNA (red): EGFP+

cells treated with Otx2-shRNA1 plasmids.

(F) Quantification of Blimp1 mRNA levels. In (B),

(C), (E), or (F), the x axis represents the number of

dots in each EGFP+ cell, and the y axis represents

the percentage of cells that have the indicated

number of dots. Error bars, SEM. Two-tailed Stu-

dent’s t test (*p < 0.05; **p < 0.01, ***p < 0.001). n =

4 (For each n, more than 200 EGFP+ cells were

counted).

See also Figure S5.
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We further examined whether RORb or Otx2 were required for

the activation of the endogenous Blimp1 gene. As loss of func-

tion of eitherOtx2 or RORb leads to changes in retinal cell types,

we wished to assay whether reduction in the expression of these

TFs would affect Blimp1 expression, without the confound of

changes in retinal cell types. In addition, as electroporation

does not target a large number of cells, and there is a great

deal of heterogeneity in the population of cells that are electropo-

rated, we preferred a method that could be applied to individual
Developmental Cell 30, 513–527, S
cells to measure mRNA levels. To this

end, we used single-molecule fluorescent

in situ hybridization (FISH) (Raj and van

Oudenaarden, 2009). This technique

uses numerous DNA probes (each probe

is �20 bp long and conjugated directly

with fluorophores) to detect a single

mRNA molecule in situ. The hybridized

probes produce a single fluorescent dot

on a single mRNA molecule (Figures 5A

and 5D). Quantification of the number of

dots per cell provides a measure of the

relative mRNA levels for the target gene.

We utilized this technique to detect
Blimp1 mRNA levels after shRNA knockdown of RORb or Otx2.

Otx2-shRNA, RORb-shRNA, or LacZ-shRNA were placed 30 to
the EGFP gene and only EGFP+ retinal cells were quantified.

Single-molecule FISH probes for RORb mRNA, Otx2 mRNA, or

Blimp1 mRNA levels were utilized (Figure 5). Twenty-four hours

after shRNA plasmids were electroporated into retinas, when

many retinal cells would still be in the same cell cycle (retinal

cell-cycle length:�30 hr), FISHwas performed for all three genes

in individual EGFP+ retinal cells.
eptember 8, 2014 ª2014 Elsevier Inc. 521
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Figure 6. Dosage of Otx2 Controls the Rod:Bipolar Ratio

(A–D) Schematics of plasmid combinations are shown on top of each panel. Different plasmid combinations were electroporated into P0 retinas in vivo. Retinas

were harvested at P21. Representative images of retina sections are shown for each condition. Red, mCherry. Green, EGFP. Scale bar, 20 mm.

(E) Quantification of the phenotype. The ratios of EGFP+ cells over all labeled bipolar cells were calculated. Error bars, SEM. Two-tailed Student’s t test

(**p < 0.01). n = 3.

(legend continued on next page)
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In the presence of RORb-shRNA, significantly fewer retinal

cells had a high number of RORb signals compared with the

LacZ-shRNA control, demonstrating that the RORb-shRNA

could successfully knock down endogenous RORb levels within

24 hr (Figures 5A and 5B). More importantly, significantly fewer

retinal cells had a high number of Blimp1 signals when RORb

expression was targeted (Figures 5A and 5C). Similar experi-

ments were performed with the Otx2-shRNA. Compared with

controls, significantly fewer retinal cells contained a high number

of Otx2 signals and Blimp1 signals when the Otx2-shRNA was

introduced (Figures 5D–5F). These data demonstrate that

RORb and Otx2 are positive regulators of endogenous Blimp1

expression.

Blimp1 and Otx2 Form a Negative Feedback Loop to
Ensure Proper Rod Photoreceptor Formation
When examining the relationship between Otx2 and Blimp1, we

discovered two Blimp1 binding sites (AGNGAAAG) in a 50 region
of a 600 bp Otx2-enhancer element, ECR2, that we previously

showed to be active in developing photoreceptors (Figure S6A)

(Emerson and Cepko, 2011; Katoh et al., 2010). Given that

Blimp1 predominantly functions as a transcriptional repressor

(John and Garrett-Sinha, 2009), we investigated whether Blimp1

could repress the activity of the Otx2ECR2 enhancer. Electro-

poration of the Otx2ECR2 reporter and a Blimp1 expression

plasmid revealed that the activity of ECR2 was significantly

inhibited by Blimp1 overexpression (Figures S6B and S6C).

Disruption of one of the Blimp1 binding sites released the repres-

sion of Blimp1 on ECR2 (Figures S6C and S6D). EMSA further

showed that Blimp1 could directly bind to the Otx2ECR2

enhancer (Figure S6E). These data demonstrated that Blimp1

and Otx2 can form a negative-feedback loop, which might be

required for the genesis of the proper ratio of rod and bipolar

cells at postnatal stages.

In mature retinas, rod photoreceptors express low levels of

Otx2, whereas bipolar cells express high levels of Otx2 (Fossat

et al., 2007). In addition, the majority of Blimp1+ cells in the

postnatal retina develop into rod photoreceptors (Figures 2G

and 2H) (Brzezinski et al., 2013). These two observations, and

that of Blimp1-mediated repression of Otx2 described above,

suggested that the expression level of Otx2 might be repressed

by Blimp1 and that the level of Otx2 might play a role in the spec-

ification of these two cell types. To test this hypothesis, B108

was used to drive constant high levels of Otx2 expression in

Blimp1-expressing cells, whose fates were then traced.

As used previously in the experiment described in Figure 3, the

Cre-sensitive bipolar reporter plasmid, Chx10BP-LCL-EGFP,

was used to report bipolar cells (Figure 3D). When Cre-express-

ing cells become bipolar cells, they turn on EGFP expression,

whereas bipolar cells with no history of Cre are marked by
(F) Knockdown ofOtx2 increases the number of rods and reduces the number of b

(LacZ-shRNA or Otx2-shRNA1 was placed in the 30 UTR of the EGFP gene) wa

distribution of EGFP+ cells among different retinal cell types was examined. Lac

Müller glial cells. n = 3.

(G) Retroviral mediated overexpression of Otx2. Schematics of retroviral constru

pLIA-Otx2 retroviruses (titer: 107) were injected into P0 retinas in vivo. Tissue was

that were rod, bipolar (BP), amacrine (AC), or Müller glial cells (MG) was calculat

See also Figure S6.
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mCherry (Figures 3F, 6A, and 6B). In controls, B108 was used

to drive only Cre expression. Consistent with our previous obser-

vation, very few EGFP+ bipolar cells were observed, demon-

strating that cells that activated B108-Cre do not usually adopt

bipolar cell fates (Figures 2G–2K, 3F, and 6C). To drive sustained

ectopic Otx2 expression only in Blimp1+ cells, the B108-Otx2-

IRES-Cre plasmid was constructed, to express Otx2 and Cre

at the same time under the control of B108. Cre could delete

the mCherry cassette within the Chx10BP-LCL-EGFP reporter,

leading to EGFP+ bipolar cells. Following introduction of B108-

Otx2-IRES-Cre along with the bipolar Chx10BP-LCL-EGFP

reporter in vivo into P0 retinas, a significant number of EGFP+

bipolar cells were observed at P14 (Figures 6D and 6E). This

result illustrated that high levels of Otx2 significantly increased

the probability that Blimp1+ cells, which normally adopt the rod

fate, now adopt the bipolar cell fate. To further investigate the

Otx2 dose-sensitivity for the rod versus bipolar fate decision,

Otx2 levels were reduced by shRNA in vivo. This led to the forma-

tion of more rods and fewer bipolar cells (Figure 6F). In contrast,

when retroviruses that expressed Otx2 and a marker gene, hu-

man placental alkaline phosphatase (PLAP), were used to infect

retinas at P0 in vivo, the number of bipolar cells was significantly

increased compared with controls (Figure 6G). A retrovirus

construct designed to overexpress Otx2 was previously used

for a similar experiment in the retina, with the result that bipolar

cells were reduced (Nishida et al., 2003). We obtained this retro-

viral construct but were unable to repeat Nishida et al.’s result

with their retrovirus construct.

DISCUSSION

This study aimed to understand the GRN that regulates one of

the binary cell-fate specification events in the postnatal retina.

We focused specifically on the decision to become a rod or a bi-

polar cell within a particular time window, P0–P3, during which

this decision is being made in siblings of a terminal division

(Turner and Cepko, 1987). The study was initially focused on

Blimp1, a node in the rod-bipolar GRN. Identification of a small

element, B108, allowed for the discovery of the regulators of

this gene and provided a starting point for the interrelationships

among other elements in this GRN.

The model shown in Figure 7 summarizes our current under-

standing of the rod-bipolar GRN. At postnatal stages, RORb and

Otx2 initiate Blimp1 expression in RPCs that are about to pro-

duce postmitotic daughter cells. As the level of Blimp1 rises,

there is direct negative feedback on Otx2, and Blimp1 nega-

tively regulates its own expression (Figure S7B), as has been

shown in other systems (Magnúsdóttir et al., 2007; Smith

et al., 2007). Cells that experience the drop in Otx2 levels enter

into the rod pathway. An additional arm of the GRN ensures that
ipolar cells. The CAG-EGFP-LacZ-shRNA or CAG-EGFP-Otx2-shRNA plasmid

s electroporated into P0 retinas in vivo. Retinas were harvested at P14. The

Z-shRNA: control shRNA plasmid. BP, bipolar cells. AC, amacrine cells. MG,

cts are shown on top. AP, human placental alkaline phosphate (PLAP). pLIA or

harvested and processed for AP detection at P21. The percentage of AP+ cells

ed. Error bars, SEM. Two-tailed Student’s t test (*p < 0.05; **p < 0.01). n R 3.
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Figure 7. Model of the GRN that Regulates Rod and Bipolar Cell Fate

Specification

Otx2 and RORb upregulate Blimp1 expression in newly postmitotic cells

produced by postnatal RPCs. As its level increases, Blimp1 represses the

expression ofOtx2, Chx10, and Blimp1. As a result, retinal cells with low levels

of Otx2 adopt the rod fate. An additional regulator in this GRN is Notch, which

is transcribed in the newly postmitotic cells and inhibits Blimp1. As a result,

these retinal cells obtain high levels of Otx2 and Chx10 and adopt bipolar cell

fate. Otx2might also be a critical positive regulator ofChx10 in bipolar cells via

a distal enhancer, the Chx10 2.5 kb enhancer (Kim et al., 2008a). CRMs/en-

hancers of the GRN are highlighted bars within each gene’s horizontal repre-

sentation. See also Figure S7.
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the cells with a high Blimp1 level do not enter into the bipolar

pathway. Previous studies showed that Blimp1 also represses

Chx10, a TF that is essential for bipolar cell genesis (Burmeister

et al., 1996; Katoh et al., 2010). As a result of these repressive

activities of Blimp1, the expression levels of Otx2 and Chx10

are reduced, which favors the rod fate. Additional support for

this model comes from misexpression of Otx2, which results

in overproduction of bipolar cells, likely at the expense of rod

photoreceptors (Figure 6G), and previous work showed the

same result when Chx10 was overexpressed (Livne-Bar et al.,

2006). Similarly, reduction of Blimp1 expression leads to over-

production of bipolar cells (Brzezinski et al., 2010; Katoh

et al., 2010), most likely through the resulting upregulation of

Chx10 and Otx2. In cells that will adopt the bipolar fate, it is

possible that Blimp1 expression is also initiated by RORb and

Otx2, as these two TFs are expressed in bipolar cells (Chow

et al., 1998; Fossat et al., 2007). However, as Blimp1 is not

expressed at detectable levels in bipolar cells, it may not be

activated in these cells, or it is quickly repressed following acti-
524 Developmental Cell 30, 513–527, September 8, 2014 ª2014 Else
vation, by as yet undefined repressive effects in bipolar cells.

An additional element of this GRN involves Notch1. We and

others previously found that Notch1 inhibits photoreceptor

formation and is required for bipolar formation (Jadhav et al.,

2006; Mizeracka et al., 2013a; Yaron et al., 2006). Analysis of

mRNA levels in single cells from which Notch1 was deleted

showed a strong upregulation of Blimp1 (Mizeracka et al.,

2013b). Constitutive activation of the Notch signaling pathway

significantly suppressed endogenous Blimp1 expression in

the retina (Figure S7C). These results suggest that the Notch

signaling pathway, at least in part, promotes bipolar formation

and inhibits rod formation via repression of Blimp1. Further

studies on the relationships among bHLH genes downstream

of Notch, as well as of the Notch-regulated TFs, such as

Hes1, Ids, and Blimp1, will help elucidate the complete GRN

that governs the rod versus bipolar cell fate specifications

(Bramblett et al., 2004; Cherry et al., 2011; Mizeracka et al.,

2013b; Morrow et al., 1999; Ohsawa and Kageyama, 2008).

One other regulatory mechanism that controls the level of

Blimp1 is microRNA regulation via the 30 UTR. Previous work

in other tissues showed that the microRNAs, Let7a, miR9, and

miR125b, are relevant microRNAs for this negative regulation

(Nie et al., 2008; West et al., 2009; Zhang et al., 2011). Interest-

ingly, these same microRNAs are present in the retina and likely

play a role in the temporal progression of retinal cell-fate spec-

ification (La Torre et al., 2013), perhaps in part through regula-

tion of Blimp1.

The importance of TF dosage in cell-fate decisions has been

demonstrated in several cases (Sigvardsson, 2012; Struhl et al.,

1992; Taranova et al., 2006). For example, the dosage of PU.1

regulates the B lymphocyte versus macrophage cell fates

in the hematopoietic system (DeKoter and Singh, 2000), and

Ngn3 dictates endocrine differentiation in a dosage-dependent

manner (Wang et al., 2010). However, the mechanisms that

regulate the levels of these TFs have not been well defined.

Here, we show that the level of Otx2 is important for regulating

the rod versus bipolar fates. A low level of Otx2 promotes the

rod fate, whereas a high level of Otx2 induces the bipolar cell

fate, and the level of Otx2 is regulated by Blimp1 in a nega-

tive-feedback loop. These findings have several implications.

First, the rod and bipolar fate decision is not fixed until after

the terminal mitosis, as Blimp1 protein expression is largely

undetected until cell-cycle exit. Consistent with this, previous

studies showed that newly postmitotic cells relied upon new

transcription and translation of the Notch1 gene in order to

take on a nonrod fate (Mizeracka et al., 2013a). The data re-

ported here show that at least a subset of newly postmitotic

cells is sensitive to the levels of Otx2 for their fate decisions.

Second, it has been suggested that Otx2 might be a critical pos-

itive regulator of Chx10 in bipolar cells via a distal enhancer (Kim

et al., 2008a). Thus, high Otx2 levels may promote bipolar cell

formation via the activation of Chx10 (Figure 7). This may

provide an explanation for the lag in bipolar cell differentiation

relative to bipolar cell birthdays. Classical [3H]-thymidine birth-

dating studies showed that some retinal cells born as early as

P0 take on the bipolar fate, with the peak of bipolar birthdays

at P4–P5 (Young, 1985a). However, bipolar cell markers do

not start to appear until P6 (Kim et al., 2008b). This lag may

be due, at least in part, to the time that is required for the
vier Inc.
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interactions among Otx2, Chx10, and other TFs to occur in the

rod-bipolar GRN to fix the bipolar fate.

Expression profiling studies demonstrated that there is a

great amount of molecular heterogeneity among RPCs (Tri-

marchi et al., 2008). Early clonal lineage analyses showed that

RPCs at the same developmental stage could give rise to

various clonal compositions (Turner and Cepko, 1987). More

recently, lineage studies that examined the clonal progeny of

specific RPCs showed that there are distinctive types of

RPCs, which are biased to produce different types of retinal

cells. Olig2, a bHLH gene, was found to be expressed in the

RPCs that do not make bipolar cells and rods (Hafler et al.,

2012). It will thus be of interest to determine whether Blimp1,

Otx2, and Chx10 regulation might occur differently in Olig2+

and Olig2� RPCs.

In addition to the findings regarding the rod and bipolar GRN,

we report the use of two techniques. Single-molecule RNA FISH

was shown to be able to detect gene expression levels in indi-

vidual cells in a sensitive and quantitative manner. Because

the levels of TFs can be important for developmental events,

the quantitative nature of single-molecule RNA FISH makes it

a valuable method for evaluating transcript levels. In addition,

we showed that CRISPR/Cas9 could successfully delete tar-

geted regions of the genome following electroporation in vivo.

Deletion at the Rosa locus was very efficient, with the rates vary-

ing somewhat with the cell type. It is not clear if the lower rate

seen, e.g., in bipolar cells relative to rods, might be due to the

relatively lower expression of CRISPR/Cas9 in bipolar cells, as

we have noted lower levels of expression in bipolar cells from

the CAG promoter. Chromatin structure might be another factor

that varies among cell types. Enhancer regions, often associ-

ated with low nucleosome occupancy, may make these regions

relatively sensitive to CRISPR/Cas9 engineering (Buecker and

Wysocka, 2012), an asset when studying the role of such

sequences.

Overall, we explored the GRN operating within late RPCs and

their newly postmitotic progeny at the time when rod and bipolar

cell fate decisions are being made, and we identified how TFs

inputs are integrated via CRMs to control the binary cell-fate

specification event. As more and more TFs and CRMs are

analyzed in the context of GRNs, it should be possible to

assemble relatively complete GRNs and study their precise

and complex regulation by establishing computational models.

EXPERIMENTAL PROCEDURES

Animals

Wild-type neonatal mice were obtained from timed pregnant CD1 mice

(Charles River Laboratories). Otx2flox/flox mice were obtained from S. Aizawa

(RIKEN Center for Departmental Biology). RosamTmG/mTmG mice were pur-

chased from The Jackson Laboratory (stock number 007576). All animal

studies were approved by the Institutional Animal Care and Use Committee

at Harvard University.

Plasmids

The CAG-EGFP, CAG-LNL-EGFP, CAG-Cre, CAG-mCherry, and CAG-LacZ

plasmids were from Matsuda and Cepko (Matsuda and Cepko, 2007). The

CAG-H2bRFP was a gift from Dr. S. Tajbakhsh. The Stagia3 vector was ob-

tained from Emerson and Cepko (Billings et al., 2010; Emerson and Cepko,

2011). See the Supplemental Experimental Procedures and Protocol for

details about the construction of all other plasmids.
Developme
In Vivo and Ex Vivo Plasmid Electroporation

Ex vivo and in vivo retina electroporation was carried out as described (Cherry

et al., 2011; Matsuda and Cepko, 2007). All ex vivo and in vivo electroporation

experiments were repeated with at least three biological replicates. Plasmids

were mixed in equal mass ratios and electroporated at a concentration of

500 ng/ml to 1 mg/ml per plasmid. For additional details, see the Protocol.

Histology and Immunohistochemistry

Dissected mouse retinas were prepared as previously described (Cherry et al.,

2011). A Leica CM3050S cryostat (Leica Microsystems) was used to prepare

20 mm cryosections. See the Supplemental Experimental Procedures for

detailed antibody sources and dilutions. EdU detection was performed with

a Click-iT EdU Alexa Fluor 594 imaging kit (C10339; Invitrogen).

Dissociation of Retina Tissues and Single-Molecule FISH

Retinal tissuesweredissociated asdescribedpreviously (Trimarchi et al., 2008).

Dissociated retinal cells were left on poly-D-lysine (0.1mg/ml; Millipore) treated

slides for 1 hr at 37�C and fixed on slides in 4% PFA (DEPC [pH 7.4]) for 15 min

at room temperature. Single-molecule FISH probes were designed and

ordered from Biosearch Technologies, and their protocol was followed. Imme-

diately after single-molecule FISH, slides were imaged by Nikon Ti Inverted

FluorescenceMicroscopewithPerfect Focus (Nikon ImagingCenter at theHar-

vardMedical School). Imageswere then analyzed by Imaris software (Bitplane).

EMSA

EMSA were performed as described previously (Kim et al., 2008a). Roughly

1 3 106 293T cells were transfected with 1 mg of CAG-LacZ, CAG-Otx2, or

CAG-RORb plasmid. Nuclear extracts were prepared from these cells or P3

wild-type mouse retinas using NE-PER nuclear and cytoplasmic extraction

reagent kit (Pierce). Complementary oligonucleotides (Figure 4D) were

ordered, annealed, and labeled by a DNA 30 End Biotinylation Kit (Pierce).

Chemiluminescent Nucleic Acid Detection Module (Pierce) was used to detect

biotin-labeled probes after EMSA.

Image Analysis

All images of retinal sections were acquired by the Zeiss LSM780 inverted

confocal microscope. Retina explants were imaged by Nikon Eclipse E1000

microscope. 293T cells were imaged by Leica DMI3000B inverted micro-

scope. Images in Figures 2, 3F, and 6 were maximum projections of 5 mm tis-

sues and were quantified by the Imaris software (Bitplane). Images in Figure 4

were quantified by calculating total fluorescent intensities of EGFP or mCherry

via Fiji software.

Statistical Methods

A two-tailed Student’s t test was used to compare differences between control

and experimental values.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and Protocol and can be found with this article online at

http://dx.doi.org/10.1016/j.devcel.2014.07.018.
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